CIRCA:Interactivity and Touch

From CIRCA

(Difference between revisions)
Jump to: navigation, search
(Wearable Haptic Display - Koo, I., Jung, K., Koo, J., Nam, J., Lee, Y., & Choi, H. R. (2006))
(Haptic Displays)
Line 18: Line 18:
Koo, I., Jung, K., Koo, J., Nam, J., Lee, Y., & Choi, H. R. (2006). Wearable tactile display based on soft actuator. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2220 -2225).
Koo, I., Jung, K., Koo, J., Nam, J., Lee, Y., & Choi, H. R. (2006). Wearable tactile display based on soft actuator. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2220 -2225).
-
 
+
<br/><br/>
==heading 2==
==heading 2==

Revision as of 14:59, 15 March 2011

Contents

Haptic Displays

Wearable Haptic Display - Koo, I., Jung, K., Koo, J., Nam, J., Lee, Y., & Choi, H. R. (2006)

Koo, I., Jung, K., Koo, J., Nam, J., Lee, Y., & Choi, H. R. (2006). Wearable tactile display based on soft actuator. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2220 -2225)

This device is a small piece of plastic that may be worn on a finger. Each device is made up of a group of pads that expand when current is run through it. Since each pad is surrounded by a harder plastic material, the pad will bulge when expanded. By controlling the amount of current passed through the device, it is possible to create different haptic patterns such as braille.

The paper continues to describe the physical characteristics of the device and how it is manufactured.

With regards to pros and cons of the device, it is noted in the paper that it is cheap to produce, physically flexible, and easy to manufacture. Drawbacks mentioned by the paper mention a high power requirement. Furthermore, it is questionable whether or not the device would function well as a wearable device as pictured. One would assume that a user would have to brush their fingertip across the surface in order to "read" the display. If the device is being worn on the fingers this is not possible.

However, the paper mentions that the technology could be applied in a variety of situations such as: interfaces for household appliances, virtual reality, and automobile interfaces. It does not mention specifically how the device could be integrated into each of those applications.

Reference:

Koo, I., Jung, K., Koo, J., Nam, J., Lee, Y., & Choi, H. R. (2006). Wearable tactile display based on soft actuator. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2220 -2225).

heading 2

Controllers

Environments

Personal tools